Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Microbiol Methods ; 192: 106364, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34774876

RESUMO

Resuscitation and detection of stressed total coliforms in chlorinated water samples is needed to assess and prevent health effects from adverse exposure. In this study, we report that the addition of a growth enhancer mix consisting of trehalose, sodium pyruvate, magnesium chloride, and 1× trace mineral supplement improved growth of microorganisms from chlorinated secondary effluent in the base medium with Colilert-18. Improving growth of chlorine stressed microorganisms from secondary effluent is crucial to decreased detection time from 18 to 8 h.


Assuntos
Carga Bacteriana/métodos , Cloro/toxicidade , Meios de Cultura/química , Monitoramento Ambiental/métodos , Escherichia coli/crescimento & desenvolvimento , Esgotos/microbiologia , Fluoretação , Cloreto de Magnésio/metabolismo , Piruvatos/metabolismo , Trealose/metabolismo , Microbiologia da Água
2.
J Appl Toxicol ; 40(9): 1272-1283, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32378258

RESUMO

Zebrafish are an attractive model for chemical screening due to their adaptability to high-throughput platforms and ability to display complex phenotypes in response to chemical exposure. The photomotor response (PMR) is an established and reproducible phenotype of the zebrafish embryo, observed 24 h post-fertilization in response to a predefined sequence of light stimuli. In an effort to evaluate the sensitivity and effectiveness of the zebrafish embryo PMR assay for toxicity screening, we analyzed chemicals known to cause both neurological effects and developmental abnormalities, following both short (1 h) and long (16 h+) duration exposures. These include chemicals that inhibit aerobic respiration (eg, cyanide), acetyl cholinesterase inhibitors (organophosphates pesticides) and several chemical weapon precursor compounds with variable toxicity profiles and poorly understood mechanisms of toxicity. We observed notable concentration-responsive, phase-specific effects in the PMR after exposure to chemicals with a known mechanism of action. Chemicals with a more general toxicity profile (toxic chemical weapon precursors) appeared to reduce all phases of the PMR without a notable phase-specific effect. Overall, 10 of 20 chemicals evaluated elicited an effect on the PMR response and eight of those 10 chemicals were picked up in both the short- and long-duration assays. In addition, the patterns of response uniquely differentiated chemical weapon precursor effects from those elicited by inhibitors of aerobic respiration and organophosphates. By providing a rapid screening test for neurobehavioral effects, the zebrafish PMR test could help identify potential mechanisms of action and target compounds for more detailed follow-on toxicological evaluations. Approved for public release: distribution unlimited.


Assuntos
Substâncias para a Guerra Química/toxicidade , Embrião não Mamífero/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Síndromes Neurotóxicas/fisiopatologia , Neurotoxinas/toxicidade , Compostos Organofosforados/toxicidade , Peixe-Zebra/crescimento & desenvolvimento , Animais , Bioensaio , Modelos Animais
3.
J Microbiol Methods ; 163: 105651, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31181230

RESUMO

The U.S. Environmental Protection Agency Alternative Test Procedure protocol outlines a method to produce chlorine-stressed bacteria for water quality testing. Achieving consistent results is challenging due effluent variability. We describe a starting point for generating chlorine-stressed samples from secondary effluent to evaluate detection technologies to demonstrate comparability to EPA reference methods.


Assuntos
Enterobacteriaceae/isolamento & purificação , Esgotos/microbiologia , Cloro/administração & dosagem , Halogenação , Estados Unidos , United States Environmental Protection Agency , Microbiologia da Água/normas , Purificação da Água/métodos
4.
Int J Toxicol ; 38(4): 251-264, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31220972

RESUMO

There is overwhelming evidence that the microbiome must be considered when evaluating the toxicity of chemicals. Disruption of the normal microbial flora is a known effect of toxic exposure, and these disruptions may lead to human health effects. In addition, the biotransformation of numerous compounds has been shown to be dependent on microbial enzymes, with the potential for different host health outcomes resulting from variations in the microbiome. Evidence suggests that such metabolism of environmental chemicals by enzymes from the host's microbiota can affect the toxicity of that chemical to the host. Chemical-microbial interactions can be categorized into two classes: Microbiome Modulation of Toxicity (MMT) and Toxicant Modulation of the Microbiome (TMM). MMT refers to transformation of a chemical by microbial enzymes or metabolites to modify the chemical in a way that makes it more or less toxic. TMM is a change in the microbiota that results from a chemical exposure. These changes span a large magnitude of effects and may vary from microbial gene regulation, to inhibition of a specific enzyme, to the death of the microbes. Certain microbiomes or microbiota may become associated with different health outcomes, such as resistance or susceptibility to exposure to certain toxic chemicals, the ability to recover following a chemical-induced injury, the presence of disease-associated phenotypes, and the effectiveness of immune responses. Future work in toxicology will require an understanding of how the microbiome interacts with toxicants to fully elucidate how a compound will affect a diverse, real-world population.


Assuntos
Substâncias Perigosas/toxicidade , Microbiota/efeitos dos fármacos , Animais , Humanos
5.
Toxicol Pathol ; 46(7): 835-846, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30205766

RESUMO

More than 80,000 chemicals are in commercial use worldwide. Hepatic metabolism to toxic intermediates is often a key mechanism leading to tissue damage and organ dysfunction. Effective treatment requires prompt detection of hepatotoxicity, ideally with rapid, minimally invasive diagnostic assays. In this study, archetypal histologic features of chemically induced hepatic injury were compared with clinical chemistries (including liver enzymes) and serum concentrations of microRNA-122 (miR-122, the processed form miR-122-5p), a biomarker of liver injury. The hepatotoxicants 4,4'-methylenedianiline (4,4'-MDA), allyl alcohol (AA), or carbon tetrachloride (CCl4) were orally administered to male Sprague-Dawley rats for 1, 5, 14, or 28 days to induce liver damage. Formalin-fixed, paraffin-embedded liver sections were evaluated histologically for inflammation, fibrosis, necrosis, and lipid accumulation. Liver enzymes were measured in serum, and serum miR-122 concentrations were assessed by quantitative polymerase chain reaction (qPCR). Histologic features of hepatic injury dose-dependently increased in both severity and frequency. Increases in liver enzymes and bilirubin were more pronounced in response to AA or 4,4'-MDA than to CCl4 at early time points. Elevated serum miR-122 levels in animals administered CCl4, AA, or 4,4'-MDA were more strongly associated with degree of hepatic histopathology than with dosage. Given this sensitive expression pattern postexposure, liver-specific miR-122 may improve the diagnostic accuracy of early hepatic injury.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/patologia , Fígado/enzimologia , MicroRNAs/sangue , Alanina Transaminase/sangue , Fosfatase Alcalina/sangue , Compostos de Anilina/toxicidade , Animais , Biomarcadores/sangue , Tetracloreto de Carbono/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/sangue , Doença Hepática Induzida por Substâncias e Drogas/enzimologia , Relação Dose-Resposta a Droga , Fígado/efeitos dos fármacos , Fígado/patologia , Masculino , Propanóis/toxicidade , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA